

• We transfuse to suppress the increased marrow activity that characterizes thalassemia and to help carry oxygen.

- Causes bone damage
- Bone pain
- Enlarged spleen
- High blood pressure in the lungs (Pulmonary hypertension)
- Need to transfuse every three weeks to keep pre-transfusion hemoglobin over 9 to 11 in order to turn off the ineffective marrow activity that causes these complications.

Why and when to transfuse

Prevalence of Endocrine Dysfunction

Endocrinopathy	Borgna-Pignatti 2004	Vogiatzi et al 2009
Low sex hormones	54.7	51.3
Low thyroid hormone	10.8	12
Diabetes	6.4	14.1
Hypoparathyroidism		2.1

Children's Hospital	USC UNIVERSITY OF SOUTHERN CALIFORNIA
We Treat Kids Better	

Iron Toxicity in SCD and Thalassemia

IRON TOXICITY ≈ TISSUE IRON X <u>ENVIRONMENTAL FACTORS</u> X GENETICS X TIME CERTAIN NUTRIENTS ARE IMPORTANT FOR PROTECTION AGAINST IRON TOXICITY

Nutrient	Reference range	Sickle cell patients		Thalassemia patients	
		Mean ± S.D.	%abn	Mean ± S.D.	%abn
A (μg/dl)	38–98	34. 4 ± 8.5	73.7%	34.6 ± 12.2	52.4%
Thiamin (µg/l)	2.4-11.7	3.3 ± -1.6	38.5%	4.1 ± 4.0	37.5%
B6 (ng/mi)	3.3-26	8.1 ± -7.7	34.2%	7.0 ± 5.9	34.8%
B12 (pg/ml)	200-1100	664.4 ± 399.2	4.7%	528 ± 152.0	0
Folate (ng/ml)	>8	13.5 + 6.0	28.6%	11.8 + 7.7	37.5%
C (mg/dl)	0.2-1.9	0.28 ± 0.29	56.7%	0.32 ± 0.40	66.7%
D25 (pg/ml)	20-100	16.3 ± 6.2	74.4%	17.1 ± 8.5	50.0%
D1-25 (pg/ml)	15-60	61.1 ± 18.2	48.6%	59.9 ± 19.5	39.1%
E-alpha (mg/dl)	5.7-19.9	8.7 ± 4.7	10.5%	7.5 ± 7.5	29.2%
E-gamma (mg/dl)	<4.3	2.3 ± 1.3	7.9%	3.0 ± 5.0	4.2%
Selenium (µg/l)	110-160	107.1 ± 13.3	67.5%	99.5 ± 20.7	75.0%
Zinc (µg/dl)	65-124	81.9 ± 17.6	24.3%	83.0 ± 15.6	8.3%
Copper (µg/l)	590-1180	1092.1 ± 221.1*	34.2%	851 ± 155.0*	0
Ceruloplasmin (mg/dl)	24–71	33.7 ± 7.5*	4.7%	26.2 ± 4.8*	16.7%
Ceruloplasmin (mg/dl)	24–71	33.7 ± 7.5*	4.7%	26.2 ± 4.8*	16.79

Overview of iron chelators

Property	Deferoxamine (DFO)	Deferiprone (DFP) (Feriprox)	Deferasirox (Exjade)
Usual dose	25–60 mg/kg/day	75 mg/kg/day	20–30 mg/kg/day
Route	s.c., i.v. 8–12 h, 5 days/week	p.o. 3 times daily	p.o. once daily
Half-life	20–30 min	3–4 h	8–16 h
Excretion	Urinary, faecal	Urinary	Faecal
Approved indications	Treatment of chronic iron overload due to transfusion-dependent anaemias	Thalassaemia major	Treatment of chronic iron overload due to frequent blood transfusions

Round 1 (Veggie Panel)

- Vit B1 (thiamine)
- Vit B6 (pyridoxine)
- Vit b12
- 25-OH-vit D
- Vit C (ascorbate)
- Vit A
- Vit E
- Carnitine
- Zn, Se, Cu, Ceruloplasmin
- Methylmalonic Acid
- Homocystine

Routine Monitoring

- Endocrine functions
- FBS, 2HPPG, insulin
- PTH
- Ca, PO4, alk phos
- Osteocalcin, Urine N-telopeptide
- TSH, T3 T4
- Testosterone, FSH, LH
- Progesterone, estradiol
- IGF1, IGFBP3
- Cortisol, ACTH
- Bone density
- Growth velocity

Demands are much greater in iron loaded patients so you need to follow levels and adjust doses accordingly

Take home messages

- It takes several years for the heart to load with iron.
- If cardiac T2* is less than 10 ms or there is evidence weak contraction of the heart or abnormal heart rhythm, you are in great danger and intensive chelation is needed.
- You can remove half the liver iron in four to six months.
- The heart doesn't start to really unload until the liver iron is below 18 mg/G.
- It takes about 17 months to remove half the iron in the heart.
- Any time you do not have a chelator in your blood, free iron is present and is entering your heart and endocrine organs.
- Just having a chelator in your blood binding free iron protects your heart, even though there may be still a lot of iron in the heart muscle itself.

So don't get discouraged, you are protected if you have chelator present in your blood. Your heart and liver will clear.

The Frustration

In the worst case scenario, no bone marrow transplantation, no hope of gene therapy, by using "standard" adequate transfusions and effective chelation to normalize iron load, a relatively normal life expectancy can be achieved with minimal complications of thalassemia.

This can be accomplished by following some relatively simple general guidelines and achieving a couple of treatment goals.

What doesn't't work is writing down a recipe for an inexperienced provider to follow on his own doesn't work

(Look, I know there are barriers, but the medical part is not rocket science or neurosurgery. But then "... Just getting along with each other" and world peace would seem to be simple concepts as well.)

To start with, its on your back

- You need to educate your self about thalassemia, iron overload and management of thalassemia.
- You have a very focused and specific interest in this disorder and really only one patient to take care of.
- You do not need an MD or other fancy degree to understand the important things about thalassemia. Maybe not the detailed biochemistry, but the important concepts are easily within reach of anyone.
- You must advocate for yourself. There are plenty of folks at this meeting, at Cooley's and other places who can help you.
- It is quite likely you will become more knowledgeable about the concepts of thalassemia care than most physicians, including hematologists.

A few suggestions

How you present your concerns to your local physician probably makes a lot of difference:

- "I just got back from a national family conference on thalassemia and everyone was getting regularly transfused to a hemoglobin of 10 or above. The speakers from centers said
- Rather than "I told a thalassemia PooBah in Chicago that I was getting transfused randomly whenever my hemoglobin is less than 7 and he said you didn't know what you were doing and you should change

Playing dumb is often effective .. Being dumb, not so much ..

